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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P
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ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

Layer in the network. 
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noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.
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sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
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on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
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order, using high-level information like predicate-
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order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
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ange is the incorrect label with highest average score
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ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

(Higher-level decisions can depend on lower-level ones.)
Layer in the network. 
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

(Higher-level decisions can depend on lower-level ones.)
Layer in the network. 

Importance of 
layer in decision
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

BERT Rediscovers the Classical NLP Pipeline  
Tenney, Das, and Pavlick (ACL 2019)
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

Tenney et al (ACL 2019)
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

Tenney et al (ACL 2019)
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.

Tenney et al (ACL 2019)

Hewitt and Manning 
(NAACL 2019)
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �
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⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.
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⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �
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⌧ (§ 3.2), normalized for each
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⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �
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⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.
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⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...
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Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
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ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.
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⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-
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noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.
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how the different layers of the BERT network can
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sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
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order, using high-level information like predicate-
argument relations to help disambiguate low-level
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �
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⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.
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⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �

(`)
⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.

weights are found on or just after the highest lay-
ers which give an improvement �(`)

⌧ in F1 score.

Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...

(b) china today blacked out a cnn interview that was ...

Figure 3: Probing classifier predictions across lay-
ers of BERT-base. Blue is the correct label; or-
ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
P

(`)
⌧ (label|s1, s2). Only select tasks shown for space.

ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
ferent levels of hierarchical information.
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Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights (§ 3.1); outlined (purple) are
differential scores �
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⌧ (§ 3.2), normalized for each

task. Horizontal axis is encoder layer.
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Per-Example Analysis. We explore, qualita-
tively, how beliefs about the structure of individ-
ual sentences develop over the layers of the BERT
network. For this, we compile the predictions of
the per-layer classifiers P

(`)
⌧ for different anno-

tations. Figure 3 shows examples selected from
the OntoNotes development set, in which the same
sentence is annotated for multiple tasks.

We find that while the pipeline order holds on
average (Figure 2), for individual examples the
model is free to, and often does, choose a different
order. In the first example, the model originally
(incorrectly) assumes that “Toronto” refers to the
city, tagging it as a GPE. However, after determin-
ing that “Toronto” is the thing getting “smoked”

(ARG1), this decision is revised and it is tagged as
ORG (i.e. the sports team). In the second exam-

(a) he smoked toronto in the playoffs with six hits, ...
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ange is the incorrect label with highest average score
over layers. Bar heights are (normalized) probabilities
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ple, the model initially tags “today” as a common
noun/date/temporal modifier (ARGM-TMP). How-
ever, this phrase is ambiguous, and it later reinter-
prets “china today” as a proper noun (i.e. a TV
network) and updates its beliefs about the entity
type and the semantic role accordingly.

5 Conclusion

We employ the edge probing task suite to explore
how the different layers of the BERT network can
resolve syntactic and semantic structure within a
sentence. We present two complementary mea-
surements: scalar mixing weights, learned from a
training corpus, and cumulative scoring, measured
on a development set, and show that a consistent
ordering emerges. We find that while this tradi-
tional pipeline order holds in the aggregate, on in-
dividual examples the network can resolve out-of-
order, using high-level information like predicate-
argument relations to help disambiguate low-level
decisions like part-of-speech. This provides new
evidence corroborating that deep language mod-
els can represent the types of syntactic and se-
mantic abstractions traditionally believed neces-
sary for language processing, and moreover that
they can model complex interactions between dif-
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Figure 1: Comparison of the structural probe performance on BERT models before and after fine-tuning. The
stability of the Spearman correlations between both the depths and distance probes suggest that the embeddings
still retain significant information about the syntax of inputted sentences.

seen in Figure 1. First, the dependency parsing fine-
tuned model shows improvements in both the cor-
relation and the absolute metrics of root accuracy
and UUAS, as early as layer 5. Since the structural
probes are designed and trained to look for syntax,
this result suggests that the fine-tuning improves
the model’s internal representation of such informa-
tion. This makes intuitive sense as the fine-tuning
task is aligned with the probing task.

On the MNLI and SQuAD fine-tuned models, we
observe small drops in performance, particularly
with the final layer. These changes are most pro-
nounced on the root accuracy and UUAS metrics,
which score against a discrete decoded solution
(argmin for root accuracy or minimum spanning
tree for UUAS), but are smaller in magnitude on
Spearman correlations which consider all predic-
tions. This suggests that while some information
is lost, the actual magnitude of change within the
“syntactic subspace” is quite small. This is consis-
tent with observations by Gauthier and Levy (2019)
and suggests that information about syntactic struc-
ture is well-preserved in end-task models.

Overall, the results from these two probing tech-
niques suggest that there is no catastrophic forget-
ting. This contrasts with a number of prior error
analyses of fine-tuned models, which have shown
that they often do not use syntax (McCoy et al.,
2019) and rely on annotation artifacts (Gururan-
gan et al., 2018) or simple pattern matching (Jia
and Liang, 2017) to solve downstream tasks. Our
analysis suggests that the while this linguistic in-

formation may not be incorporated into the final
predictions, it is still available in the model’s repre-
sentations.

5 What changes in the representations?

Supervised probes are highly targeted: as trained
models, they are sensitive to particular linguistic
phenomena, but they also can learn to ignore every-
thing else. If the supervised probe is closely related
to the fine-tuning task–such as for syntactic probes
and a dependency parsing model–we have observed
significant changes in performance, but otherwise
we see little effect. Nonetheless, we know that
something must be changing when fine-tuning–as
evidenced by prior work that shows that end-task
performance degrades if the encoder is completely
frozen (Peters et al., 2019). To explore this change
more broadly, we turn to an unsupervised tech-
nique, Representational Similarity Analysis, and
corroborate our findings with layer-based ablations.

5.1 Representational Similarity Analysis

Representational Similarity Analysis (RSA;
Laakso and Cottrell, 2000) is a technique for
measuring the similarity between two different
representation spaces for a given set of stimuli.
Originally developed for neuroscience (Kriegesko-
rte et al., 2008), it has become increasingly used
to analyze similarity between neural network
activations (Abnar et al., 2019; Chrupała and
Alishahi, 2019). The method works by using a
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Figure 1: Comparison of the structural probe performance on BERT models before and after fine-tuning. The
stability of the Spearman correlations between both the depths and distance probes suggest that the embeddings
still retain significant information about the syntax of inputted sentences.

seen in Figure 1. First, the dependency parsing fine-
tuned model shows improvements in both the cor-
relation and the absolute metrics of root accuracy
and UUAS, as early as layer 5. Since the structural
probes are designed and trained to look for syntax,
this result suggests that the fine-tuning improves
the model’s internal representation of such informa-
tion. This makes intuitive sense as the fine-tuning
task is aligned with the probing task.

On the MNLI and SQuAD fine-tuned models, we
observe small drops in performance, particularly
with the final layer. These changes are most pro-
nounced on the root accuracy and UUAS metrics,
which score against a discrete decoded solution
(argmin for root accuracy or minimum spanning
tree for UUAS), but are smaller in magnitude on
Spearman correlations which consider all predic-
tions. This suggests that while some information
is lost, the actual magnitude of change within the
“syntactic subspace” is quite small. This is consis-
tent with observations by Gauthier and Levy (2019)
and suggests that information about syntactic struc-
ture is well-preserved in end-task models.

Overall, the results from these two probing tech-
niques suggest that there is no catastrophic forget-
ting. This contrasts with a number of prior error
analyses of fine-tuned models, which have shown
that they often do not use syntax (McCoy et al.,
2019) and rely on annotation artifacts (Gururan-
gan et al., 2018) or simple pattern matching (Jia
and Liang, 2017) to solve downstream tasks. Our
analysis suggests that the while this linguistic in-

formation may not be incorporated into the final
predictions, it is still available in the model’s repre-
sentations.

5 What changes in the representations?

Supervised probes are highly targeted: as trained
models, they are sensitive to particular linguistic
phenomena, but they also can learn to ignore every-
thing else. If the supervised probe is closely related
to the fine-tuning task–such as for syntactic probes
and a dependency parsing model–we have observed
significant changes in performance, but otherwise
we see little effect. Nonetheless, we know that
something must be changing when fine-tuning–as
evidenced by prior work that shows that end-task
performance degrades if the encoder is completely
frozen (Peters et al., 2019). To explore this change
more broadly, we turn to an unsupervised tech-
nique, Representational Similarity Analysis, and
corroborate our findings with layer-based ablations.

5.1 Representational Similarity Analysis

Representational Similarity Analysis (RSA;
Laakso and Cottrell, 2000) is a technique for
measuring the similarity between two different
representation spaces for a given set of stimuli.
Originally developed for neuroscience (Kriegesko-
rte et al., 2008), it has become increasingly used
to analyze similarity between neural network
activations (Abnar et al., 2019; Chrupała and
Alishahi, 2019). The method works by using a
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Figure 1: Comparison of the structural probe performance on BERT models before and after fine-tuning. The
stability of the Spearman correlations between both the depths and distance probes suggest that the embeddings
still retain significant information about the syntax of inputted sentences.

seen in Figure 1. First, the dependency parsing fine-
tuned model shows improvements in both the cor-
relation and the absolute metrics of root accuracy
and UUAS, as early as layer 5. Since the structural
probes are designed and trained to look for syntax,
this result suggests that the fine-tuning improves
the model’s internal representation of such informa-
tion. This makes intuitive sense as the fine-tuning
task is aligned with the probing task.

On the MNLI and SQuAD fine-tuned models, we
observe small drops in performance, particularly
with the final layer. These changes are most pro-
nounced on the root accuracy and UUAS metrics,
which score against a discrete decoded solution
(argmin for root accuracy or minimum spanning
tree for UUAS), but are smaller in magnitude on
Spearman correlations which consider all predic-
tions. This suggests that while some information
is lost, the actual magnitude of change within the
“syntactic subspace” is quite small. This is consis-
tent with observations by Gauthier and Levy (2019)
and suggests that information about syntactic struc-
ture is well-preserved in end-task models.

Overall, the results from these two probing tech-
niques suggest that there is no catastrophic forget-
ting. This contrasts with a number of prior error
analyses of fine-tuned models, which have shown
that they often do not use syntax (McCoy et al.,
2019) and rely on annotation artifacts (Gururan-
gan et al., 2018) or simple pattern matching (Jia
and Liang, 2017) to solve downstream tasks. Our
analysis suggests that the while this linguistic in-

formation may not be incorporated into the final
predictions, it is still available in the model’s repre-
sentations.

5 What changes in the representations?

Supervised probes are highly targeted: as trained
models, they are sensitive to particular linguistic
phenomena, but they also can learn to ignore every-
thing else. If the supervised probe is closely related
to the fine-tuning task–such as for syntactic probes
and a dependency parsing model–we have observed
significant changes in performance, but otherwise
we see little effect. Nonetheless, we know that
something must be changing when fine-tuning–as
evidenced by prior work that shows that end-task
performance degrades if the encoder is completely
frozen (Peters et al., 2019). To explore this change
more broadly, we turn to an unsupervised tech-
nique, Representational Similarity Analysis, and
corroborate our findings with layer-based ablations.

5.1 Representational Similarity Analysis

Representational Similarity Analysis (RSA;
Laakso and Cottrell, 2000) is a technique for
measuring the similarity between two different
representation spaces for a given set of stimuli.
Originally developed for neuroscience (Kriegesko-
rte et al., 2008), it has become increasingly used
to analyze similarity between neural network
activations (Abnar et al., 2019; Chrupała and
Alishahi, 2019). The method works by using a
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Toy Sentence Classification 
Task

Name Target Spurious Example

contains-1 a ‘1’ occurs in the 
sequence

a ‘2’ occurs in 
the sequence

2 4 11 1 4

prefix-
duplicate

sequence begins with a 
duplicate

a ‘2’ occurs in 
the sequence

5 5 11 12 2

adjacent-
duplicate

duplicate occurs 
somewhere in the 

sequence

a ‘2’ occurs in 
the sequence

11 12 3 3 2

first-last first symbol and last 
symbol are the same

a ‘2’ occurs in 
the sequence

7 2 11 12 7
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Maybe it’s not just a matter of features being “there” 
or “not there”…?

Linguistic features seem to be “there” after 
pretraining, but fine-tuned models don’t use them…

why?

Maybe the features are erased during finetuning? 

Maybe there just isn’t enough signal in training?

Lexical Prior
BERT Base
MNLI
SQuAD
Dependencies

No obvious drop in probing 
accuracy after fine-tuning.

Different features behave differently 
given the same training data.
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #1: Spurious Lexical Item

The piano teachers see the handyman.
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #1: Lexical Item

Often, the piano teachers of the lawyer see the 
handyman.
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #2: Sentence Length

The piano teachers of the lawyer who works in the 
city across the river see the handyman.
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #3: Plural Nouns
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #4: Closest Noun Agreement
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(a) Illustration of how s-rate? is determined.

Absolute Relative (t to s)
Tgt. Spurious Ratio Diff.

T5 0.43 -0.32 -0.63 -0.67
BERT 0.33 -0.77 -0.78 -0.79
GloVe -0.08 -0.29 -0.37 -0.47

(b) Spearman’s ⇢: MDL vs. s-rate?

(c) Logistic regression plots between s-rate? and extractability of t relative to s.

Figure 3: Relative Extractability Correlates with Adoption of Target Feature. Table shows
Spearman’s ⇢ between s-rate? (the amount of evidence required before a fine-tuned model adopts
the target feature) and various measures of extractability over the (s, t) pairs. Bold indicates a
significant correlation. Relative extractability, whether ratio ( MDL(s)

MDL(t) ) or difference (MDL(s) �

MDL(t)) explains learning behavior better than absolute extractability of either feature.

Figure 4: Learning Curves for T5. Curves show use of spurious feature (s-only accuracy) as a
function of training evidence (s-only rate). Each line represents one (t, s) pair (described in §4.1).
Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t) and
summarized in the bar chart). When t is much harder to extract relative to s (lower ratios), the
classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error.

support for this hypothesis. In particular, we see evidence that models will tend to use imperfect fea-
tures that are more readily-extractable over perfectly-predictive features that are harder to extract.
This insight is highly related to prior work which has shown, e.g., that neural networks learn “easy”
examples before they learn “hard” examples (Mangalam & Prabhu, 2019). What is novel about our
findings is the direct connection to new probing techniques which have received significant attention
in NLP but have yet to be connected to explanations of or predictions about SOTA models’ decisions
in practice. One interpretation of our results is that probing classifiers can be viewed as measures
of a pre-trained representation’s inductive biases. Thus far, analysis using probing classifiers has
primarily focused on whether important linguistic features can be decoded from representations at
better-than-baseline levels, but there has been little insight about what it would mean for a represen-
tations’ encoding of a feature to be “sufficient”. Based on these experiments, we argue that a feature
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…model learns the right thing 
despite no training incentive to do so.
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When target is much harder 
to extract than spurious…

Information-Theoretic Probing Explains Reliance on Spurious Heuristics  
Jha, Lovering, Linzen, and Pavlick (2020)

…model requires substantial training 
incentive (e.g., 5% of training examples).
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s-only 
rate�

(a) Illustration of how s-rate? is determined.

Absolute Relative (t to s)
Tgt. Spurious Ratio Diff.

T5 0.43 -0.32 -0.63 -0.67
BERT 0.33 -0.77 -0.78 -0.79
GloVe -0.08 -0.29 -0.37 -0.47

(b) Spearman’s ⇢: MDL vs. s-rate?

(c) Logistic regression plots between s-rate? and extractability of t relative to s.

Figure 3: Relative Extractability Correlates with Adoption of Target Feature. Table shows
Spearman’s ⇢ between s-rate? (the amount of evidence required before a fine-tuned model adopts
the target feature) and various measures of extractability over the (s, t) pairs. Bold indicates a
significant correlation. Relative extractability, whether ratio ( MDL(s)

MDL(t) ) or difference (MDL(s) �

MDL(t)) explains learning behavior better than absolute extractability of either feature.

Figure 4: Learning Curves for T5. Curves show use of spurious feature (s-only accuracy) as a
function of training evidence (s-only rate). Each line represents one (t, s) pair (described in §4.1).
Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t) and
summarized in the bar chart). When t is much harder to extract relative to s (lower ratios), the
classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error.

support for this hypothesis. In particular, we see evidence that models will tend to use imperfect fea-
tures that are more readily-extractable over perfectly-predictive features that are harder to extract.
This insight is highly related to prior work which has shown, e.g., that neural networks learn “easy”
examples before they learn “hard” examples (Mangalam & Prabhu, 2019). What is novel about our
findings is the direct connection to new probing techniques which have received significant attention
in NLP but have yet to be connected to explanations of or predictions about SOTA models’ decisions
in practice. One interpretation of our results is that probing classifiers can be viewed as measures
of a pre-trained representation’s inductive biases. Thus far, analysis using probing classifiers has
primarily focused on whether important linguistic features can be decoded from representations at
better-than-baseline levels, but there has been little insight about what it would mean for a represen-
tations’ encoding of a feature to be “sufficient”. Based on these experiments, we argue that a feature

7

BERT

T5



Maybe it’s not just a matter of features being “there” 
or “not there”…?

Linguistic features seem to be “there” after 
pretraining, but fine-tuned models don’t use them…

why?

Maybe the features are erased during finetuning? 

Maybe there just isn’t enough signal in training?

Lexical Prior
BERT Base
MNLI
SQuAD
Dependencies

No obvious drop in probing 
accuracy after fine-tuning.

Different features behave differently 
given the same training data.
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why?

Maybe the features are erased during finetuning? 

Maybe there just isn’t enough signal in training?

Lexical Prior
BERT Base
MNLI
SQuAD
Dependencies

No obvious drop in probing 
accuracy after fine-tuning.

Different features behave differently 
given the same training data.

Training data alone can’t explain model 
behavior; models need little incentive 

when features are easy to extract.
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Linguistic features seem to be “there” after 
pretraining, but fine-tuned models don’t use them…

why?

Maybe the features are erased during finetuning? 

Maybe there just isn’t enough signal in training?

Lexical Prior
BERT Base
MNLI
SQuAD
Dependencies

No obvious drop in probing 
accuracy after fine-tuning.

Different features behave differently 
given the same training data.

…so…?
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• Takeaway: Pretraining can be viewed as endowing inductive 

biases, pushing the model to prefer certain solutions over others 

• Takeaway: To improve model behavior, we can tweak training 
data or tweak pretraining (ideally in principled ways). We might 
not always have control over both (Personally, I like to assume 
can’t chose our training data…) 

• Implications: Innate structure via distributional pretraining? A 
happy solution to poverty of the stimulus that everyone can get 
behind? ;) 

• Implications: Innate structure from non-language pre-training? 
E.g., objects and agents by modeling the physical world?
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Thank you!


